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We propose a new class of gravity-matter theories, describing R+R2 gravity interacting
with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in
terms of two different non-Riemannian volume-forms (generally covariant integration
measure densities) on the underlying space–time manifold, which are independent of
the Riemannian metric. The nonlinear gauge field system contains a square-root

√
−F 2

of the standard Maxwell Lagrangian which is known to describe charge confinement in
flat space–time. The initial new gravity-matter model is invariant under global Weyl-
scale symmetry which undergoes a spontaneous breakdown upon integration of the non-
Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an
effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence
on the scalar “dilaton” field kinetic term X, with a remarkable effective scalar potential
possessing two infinitely large flat regions as well as with nontrivial effective gauge
coupling constants running with the “dilaton” ϕ. Corresponding to each of the two
flat regions we find “vacuum” configurations of the following types: (i) ϕ = const and
a nonzero gauge field vacuum

√
−F 2 6= 0, which corresponds to a charge confining

phase; (ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum
√
−F 2 = 0

which supports confinement-free charge dynamics. In one of the flat regions of the effec-
tive scalar potential we also find: (iii) X = const (“kinetic vacuum”) and a nonzero
gauge field vacuum

√
−F 2 6= 0, which again corresponds to a charge confining phase.

In all three cases, the space–time metric is de Sitter or Schwarzschild–de Sitter. Both
“kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below
a de Sitter horizon. Extension to the whole space requires matching the latter with the
exterior region with a nonstandard Reissner–Nordström–de Sitter geometry carrying an
additional constant radial background electric field. As a result, we obtain two classes
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of gravitational bag-like configurations with properties, which on one hand partially
parallel some of the properties of the solitonic “constituent quark” model and, on the
other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.

Keywords: Modified gravity theories; non-Riemannian volume-forms; global Weyl-scale
symmetry spontaneous breakdown; flat regions of scalar potential; charge confining non-
linear gauge field system; gravitational bags.

PACS numbers: 04.50.Kd, 11.30.Qc, 98.80.Bp, 95.36.+x

1. Introduction

To understand the basic features of hadronic physics we are unavoidably lead to

the existence of different phases of the gauge theory. Furthermore, these different

phases are apparently associated with different values of the vacuum energy density,

as described for example in the MIT bag model of hadrons.1,2 Inside the MIT bag,

quarks and gluons propagate almost freely and there the vacuum energy density is

big, defining the so-called bag constant. Outside the bag there is no propagation

of either quarks or gluons, and in the MIT bag model the outside vacuum energy

density is set to zero (any choice for the outside energy density is possible, if we

ignore gravity, since while ignoring gravity only the difference of the energy den-

sities inside and outside the bag is of significance). For a vacuum state p = −ρ,

where the vacuum pressure inside the bag is negative while zero outside, an empty

bag therefore tends to implode. When the bag is filled with particles, the positive

pressure of the particles stabilizes the bubble at a certain radius.

It is interesting that a similar “two phase” structure defined via two vastly dif-

ferent scales of the vacuum energy density does also appear in cosmology. Indeed,

according to the most accepted scenario of the early universe — the inflation pic-

ture,3–8 there was at the beginning a large vacuum energy density. Together with

this, for a description of the present slowly accelerated phase of the universe9–12

(for a review, see Ref. 13) one employs a small vacuum energy density.

A scenario of continuously connecting an inflationary phase to a slowly accele-

rating universe through the evolution of a single scalar field — the so-called

“quintessential inflation” scenario — has been first proposed in Ref. 14, which

triggered active further development (models based on generalized F (R) gravity;15

based on the k-essence16–19 framework — see Ref. 20; based on the “variable

gravity” mode21 and containing an extensive list of references to earlier work on

the topic — see Refs. 22 and 23).

In the cosmological context we have been able to construct models providing

a unified scenario where both an inflation and a slowly accelerated phase for the

universe can appear naturally from the existence of two infinitely large flat regions

in the effective scalar field potential with vastly different scales which we derive

systematically from a Lagrangian action principle.24,25 Namely, we have constructed

a new kind of globally Weyl-scale invariant gravity-matter action within the first-

order (Palatini) approach formulated in terms of two different non-Riemannian
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volume-forms (generally covariant integration measure densities on the pertinent

space–time manifold independent of the Riemannian metric). The principal feature

is the requirement of global Weyl-scale invariance and the choice of different scaling

properties of the two non-Riemannian measures (volume elements) which dictates

the precise form of the terms in the action. In this new theory, there is a single

scalar field with kinetic terms coupled to both non-Riemannian measures, whereas

the standard Einstein–Hilbert term R and the R2-term couple each to a different

non-Riemannian measure.

Global Weyl-scale invariance is spontaneously broken upon solving part of the

equations of motion corresponding to the auxiliary antisymmetric tensor gauge

fields of maximal rank defining the two non-Riemannian measures — due to the

appearance of two arbitrary dimensionful integration constants. The latter produce

a remarkable effect on the resulting physical Einstein-frame theory24,25 — we find

there an effective k-essence16–19 type of theory, where the effective scalar field poten-

tial has two infinitely large flat regions corresponding to the two accelerating phases

of the universe — one for large negative values of the scalar field with a very large

height corresponding to the early universe, and another one for large positive values

of the scalar field with a very low height corresponding to the universe of the present

epoch.

Since the construction was based on geometrical and symmetry considerations,

which are very general, one may think that a similar model can be constructed for a

different physical application, i.e. the phases of a gauge theory. As we will see here,

it is indeed possible to obtain a phase structure of confinement and deconfinement

related to what the MIT bag model suggests.

To this end, we will couple the above new type of gravity-matter theory defined

in terms of the two different non-Riemannian measures and containing R2 gravity

term to a special kind of nonstandard nonlinear gauge field model (for the analogous

situation in the less general case of gravity-matter models with one non-Riemannian

and one standard Riemannian integration measures, see Ref. 26).

Namely, let us consider Abelian gauge fields whose Lagrangian contains both

the standard Maxwell Lagrangian (∼ F 2 ≡ FµνF
µν) as well as the nonstandard

square-root of the latter (∼
√
−F 2 ) coupled to the two different non-Riemannian

measures in a globallyWeyl-scale invariant form. In flat space–time, the
√
−F 2-term

is known to describe dynamics of charge confinement27–31 related to the nonzero

vacuum value of
√
−F 2. The latter is an explicit realization of an earlier proposal by

’t Hooft32,33 who argued that the energy density of electrostatic field configurations

in the low-energy description of confining quantum gauge theories must be a linear

function of the electric displacement field in the infrared region (the latter appearing

as a quantum “infrared counterterm”). In App. B we extend the flat space–time

proof in Ref. 28 about the charge confining property of the
√
−F 2-term to the case

of curved static spherically-symmetric space–times.

For further interesting properties of gravity-matter theories involving the

“square-root” Maxwell term
√
−F 2 (black holes with confining electric potential,
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new mechanism for dynamical generation of cosmological constant, charge-hiding

and charge-confining via “tube-like” wormholes), see Refs. 34–36.

Let us remark that one could start with the non-Abelian version of the non-

linear gauge field system with
√

−Tr
(

FµνFµν
)

. Since we will be interested in static

spherically symmetric solutions, the non-Abelian theory effectively reduces to an

Abelian one as pointed out in Refs. 27–31.

In the present context after including the coupling of the non-Riemannian-

measures-modified gravity-matter theory to the nonlinear gauge field with
√
−F 2,

in the pertinent physical Einstein-frame we obtain an effective matter Lagrangian

again of “k-essence” type with quadratic dependence on the ϕ kinetic term X of

the scalar “dilaton” field ϕ, with a remarkable effective scalar potential possessing

two infinite flat regions with different energy scales. In addition, we get a non-

trivial coupling of the nonlinear gauge field to the “dilaton” kinetic term X
√
−F 2.

All terms are multiplied by nontrivial “dilaton”-dependent coefficient functions,

including nontrivial effective gauge coupling constants running with ϕ. An impor-

tant observation is their “flatness” (constancy with respect to running ϕ) in both

infinitely large flat regions of the effective potential.

We study the static spherically symmetric “vacuum” configurations correspond-

ing to each of the two flat regions. In all cases the gravitational part is de Sitter type

(de Sitter or Schwarzschild–de Sitter) with effective cosmological constant whose

value is determined by the height of the total effective “dilaton” potential in each of

the flat regions. The latter includes, apart from the purely scalar “dilatonic” ones,

also additional contributions due to (possible) nonzero vacuum values of
√
−F 2

and X .

The static spherically symmetric “vacuum” configurations of the “dilaton” ϕ

and the nonlinear gauge field are of the following types:

(i) ϕ = const, i.e. X = 0 and a nonzero gauge field vacuum
√
−F 2 6= 0, the latter

corresponding to a confining phase — these solutions exist in both flat regions

of the effective scalar potential (the one for large negative values of ϕ and the

other one for large positive values of ϕ).

(ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum
√
−F 2 = 0,

which supports confinement-free charge dynamics — this solution exists both

in the flat region of the effective scalar potential for large positive values of ϕ

as well as for a special value of one of the scalar potential’s parameters also in

the flat region for large negative values of ϕ.

(iii) X = const (“kinetic vacuum”) and a nonzero gauge field vacuum
√
−F 2 6= 0,

which again corresponds to a confining phase — this solution exist in the flat

region of the effective scalar potential for large negative values of ϕ for generic

scalar potential’s parameter values.

An important point here is that both “kinetic vacuums” (ii) and (iii) do not

represent themselves as genuine vacuum configurations, since they are defined only

within a finite-volume space region below the de Sitter horizon. In order to obtain a
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well-defined static spherically symmetric configuration over the whole space–time,

we need to match at the de Sitter horizon the “kinetic vacuums” (ii) and (iii)

living in the interior de Sitter region to the exterior region with a nonstandard

Reissner–Nordström–de Sitter geometry which carries an additional constant radial

background electric field. Studying the vacuum energy densities inside and outside

the de Sitter horizon shows that the inside energy density is higher than the outside

one. Thus, the fully extended to the whole space–time “kinetic vacuums” (ii) and

(iii) represent gravitational bag-like configurations where:

(a) The type (ii) gravitational bag mimics some of the properties of the MIT bag

model1,2 — finite volume space region with deconfinement and large energy

density versus infinite volume exterior region with confinement and low energy

density.

(b) Both type (ii) and type (iii) gravitational bags resemble some of the properties

of the solitonic “constituent quark” model37 — they are charged and carry

“color” flux to infinity.

The plan of the paper is as follows. In Sec. 2, we describe in some detail the

general formalism for the new class of gravity-matter systems defined in terms of

two independent non-Riemannian integration measures. In Secs. 3 and 4, we de-

scribe the properties of the two flat regions of the Einstein-frame effective scalar

potential and derive the static spherically symmetric vacuum configurations. In

Sec. 5, we construct static spherically symmetric solutions representing gravita-

tional bag-like configurations. We conclude in Sec. 6 with some discussions. In

App. A, we briefly outline the canonical Hamiltonian treatment of the modified

gravity-matter models with two non-Riemannian space–time volume-forms, which

elucidates the physical meaning of the auxiliary fields defining the non-Riemannian

volume-forms. In App. B following Ref. 28, we show that the presence of the “square-

root” Maxwell term
√
−F 2 generates confining effective potential between quan-

tized charged fermions in static spherically symmetric space–times.

2. Gravity-Matter System Coupled to Charge-Confining

Nonlinear Gauge Field A Formalism with Two Independent

non-Riemannian Volume-Forms

We shall consider the following nonstandard gravity/nonlinear-gauge-field/matter

system with an action of the general form involving two independent non-

Riemannian integration measure densities generalizing the models studied in

Refs. 25 and 24 (for simplicity we will use units where the Newton constant is

taken as GNewton = 1/16π):

S =

∫

d4xΦ1(A)
[

R+ L(1)
]

+

∫

d4xΦ2(B)

[

L(2) + ǫR2 +
Φ(H)√−g

]

. (1)
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Here the following notations are used:

• Φ1(A) and Φ2(B) are two independent non-Riemannian volume-forms, i.e.

generally covariant integration measure densities on the underlying space–time

manifold:

Φ1(A) =
1

3!
εµνκλ∂µAνκλ , Φ2(B) =

1

3!
εµνκλ∂µBνκλ , (2)

defined in terms of field-strengths of two auxiliary 3-index antisymmetric tensor

gauge fields. Φ1,2 take over the role of the standard Riemannian integration mea-

sure density
√−g ≡

√

− det ‖gµν‖ in terms of the space–time metric gµν .

• R = gµνRµν(Γ) and Rµν(Γ) are the scalar curvature and the Ricci tensor in

the first-order (Palatini) formalism, where the affine connection Γµ
νλ is a priori

independent of the metric gµν . Note that in the second action term we have added

a R2 gravity term (again in the Palatini form). Let us recall that R+R2 gravity

within the second-order formalism (which was also the first inflationary model)

was originally proposed in Ref. 38.

• L(1,2) denote two different Lagrangians of a single scalar matter field (“dilaton”)

and of an Abelian gauge field potential Aµ of the form:

L(1) = −1

2
gµν∂µϕ∂νϕ− V (ϕ)− f0

2

√

−F 2(g) , V (ϕ) = f1 exp{−αϕ} , (3)

L(2) = − b

2
e−αϕgµν∂µϕ∂νϕ+ U(ϕ)− 1

4e2
F 2(g) , U(ϕ) = f2 exp{−2αϕ} , (4)

where

F 2(g) = FµνFκλg
µκgνλ , Fµν = ∂µAν − ∂νAµ . (5)

Here, α, f1, f2 are dimensionful positive parameter, whereas b is a dimensionless

one. The choice of the scalar potentials in (3)–(4) is similar to the choice in

Ref. 39.

• Φ(H) indicate the dual field strength of a third auxiliary 3-index antisymmetric

tensor gauge field:

Φ(H) =
1

3!
εµνκλ∂µHνκλ , (6)

whose presence is crucial for nontriviality of the model.

Concerning the explicit form of the non-Riemannian integration measure densi-

ties (2) let us note that any of the pertinent auxiliary 3-index antisymmetric tensor

gauge fields, for instance, Aµνλ can be in particular parametrized in terms of four

auxiliary scalar fields {φI}I=1,...,4:

Aµνλ =
1

4
εIJKLφ

I∂µφ
J∂νφ

K∂λφ
L , (7)

so that

Φ1(A) =
1

4!
εµνκλεIJKL∂µφ

I∂νφ
J∂κφ

K∂λφ
L = det

∥

∥

∥

∥

∂φI

∂xµ

∥

∥

∥

∥

, (8)
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acquires the form of a Jacobian. In a recent study40 of general relativity as an

extended canonical gauge theory a similar Jacobian representation of the covariant

integration measure has appeared in terms of additional scalar fields. However,

unlike the present case in the construction of Ref. 40 the additional scalar fields

enter also in the proper Lagrangian.

In what follows we will stick to the representation (2).

The scalar field potentials and the separate locations of the standard Maxwell

and the square-root Maxwell gauge field terms have been chosen in such a way that

the original action (1) is invariant under global Weyl-scale transformations:

gµν → λgµν , Γµ
νλ → Γµ

νλ , ϕ → ϕ+
1

α
lnλ ,Aµ → Aµ ,

Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Hµνκ → Hµνκ .

(9)

The equations of motion resulting from the action (1) are as follows. Variation

of (1) with respect to affine connection Γµ
νλ:

∫

d4x
√−ggµν

(

Φ1√−g
+ 2ǫ

Φ2√−g
R

)

(

∇κδΓ
κ
µν −∇µδΓ

κ
κν

)

= 0 , (10)

gives, following the analogous derivation in the Ref. 39, that Γµ
νλ becomes a Levi-

Civita connection:

Γµ
νλ = Γµ

νλ(ḡ) =
1

2
ḡµκ
(

∂ν ḡλκ + ∂λḡνκ − ∂κḡνλ
)

, (11)

with respect to to the Weyl-rescaled metric ḡµν :

ḡµν = (χ1 + 2ǫχ2R)gµν , χ1 ≡ Φ1(A)√−g
, χ2 ≡ Φ2(B)√−g

. (12)

Variation of the action (1) with respect to auxiliary tensor gauge fields Aµνλ,

Bµνλ and Hµνλ yields the equations:

∂µ
[

R+ L(1)
]

= 0 ,

∂µ

[

L(2) + ǫR2 +
Φ(H)√−g

]

= 0 ,

∂µ

(

Φ2(B)√−g

)

= 0 ,

(13)

whose solutions read:

Φ2(B)√−g
≡ χ2 = const ,

R+ L(1) = −M1 = const ,

L(2) + ǫR2 +
Φ(H)√−g

= −M2 = const .

(14)
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Here, M1 and M2 are arbitrary dimensionful and χ2 arbitrary dimensionless in-

tegration constants. The appearance of M1, M2 signifies dynamical spontaneous

breakdown of global Weyl-scale invariance under (9) due to the scale noninvariant

solutions (second and third ones) in (14).

It is also very instructive to elucidate the physical meaning of the three arbi-

trary integration constants M1, M2, χ2 from the point of view of the canonical

Hamiltonian formalism. Namely, as shown in App. A M1, M2, χ2 are identified as

conserved Dirac-constrained canonical momenta conjugated to (certain components

of) the auxiliary maximal rank antisymmetric tensor gauge fields Aµνλ, Bµνλ, Hµνλ

entering the original non-Riemannian volume-form action (1).

Varying (1) with respect to gµν and using relations (14) we have:

χ1

[

Rµν +
1

2

(

gµνL
(1) − T (1)

µν

)

]

− 1

2
χ2

[

T (2)
µν + gµν

(

ǫR2 +M2

)

µν

]

= 0 , (15)

where χ1 and χ2 are defined in (12), and T
(1,2)
µν are the energy–momentum tensors

of the scalar+gauge field Lagrangians with the standard definitions:

T (1,2)
µν = gµνL

(1,2) − 2
∂

∂gµν
L(1,2) . (16)

Taking the trace of Eq. (15) and using again second relation (14) we solve for

the scale factor χ1:

χ1 = 2χ2
T (2)/4 +M2

L(1) − T (1)/2−M1
, (17)

where T (1,2) = gµνT
(1,2)
µν .

Using second relation (14), Eq. (15) can be put in the Einstein-like form:

Rµν − 1

2
gµνR =

1

2
gµν
(

L(1) +M1

)

+
1

2Ω

(

T (1)
µν − gµνL

(1)
)

+
χ2

2χ1Ω

[

T (2)
µν + gµν

(

M2 + ǫ(L(1) +M1)
2
)

]

, (18)

where

Ω = 1− χ2

χ1
2ǫ
(

L(1) +M1

)

. (19)

Let us note that (12), upon taking into account second relation (14) and (19), can

be written as:

ḡµν = χ1Ωgµν . (20)

1550133-8
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Now, we can bring Eq. (18) into the standard form of Einstein equations for the

rescaled metric ḡµν (20), i.e. the Einstein-frame equations:

Rµν(ḡ)−
1

2
ḡµνR(ḡ) =

1

2
T eff
µν , (21)

with energy–momentum tensor corresponding according to the definition (16):

T eff
µν = gµνLeff − 2

∂

∂gµν
Leff , (22)

to the following effective (Einstein-frame) scalar field Lagrangian:

Leff =
1

χ1Ω

{

L(1) +M1 +
χ2

χ1Ω

[

L(2) +M1 + ǫ(L(1) +M1)
2
]

}

. (23)

In order to explicitly write Leff in terms of the Einstein-frame metric ḡµν (20)

we use the short-hand notation for the scalar kinetic term:

X ≡ −1

2
ḡµν∂µϕ∂νϕ (24)

and represent L(1,2) in the form:

L(1) = χ1ΩX − V − χ1Ω
f0
2

√

−F 2(ḡ) ,

L(2) = χ1Ωbe−αϕX + U − (χ1Ω)2
1

4e2
F 2(ḡ) ,

(25)

with V and U as in (3)–(4).

From Eqs. (17) and (19), taking into account (25), we find:

1

χ1Ω
=

(V −M1)

2χ2[U +M2 + ǫ(V −M1)2]

×
[

1− χ2

(

be−αϕ

V −M1
− 2ǫ

)

X − ǫχ2f0
√

−F 2(ḡ)

]

. (26)

Upon substituting expression (26) into (23) we arrive at the explicit form for the

Einstein-frame matter Lagrangian:

Leff = A(ϕ)X +B(ϕ)X2 − Ueff(ϕ) −
F 2(ḡ)

4e2eff(ϕ)

− feff(ϕ)

2

√

−F 2(ḡ)− ǫχ2f0A(ϕ)X
√

−F 2(ḡ) . (27)

The coefficient functions in (27) read:

A(ϕ) = 1− 4Ueff(ϕ)

[

ǫχ2 −
χ2be

−αϕ

2(V (ϕ)−M1)

]

,

B(ϕ) = ǫχ2 − 4Ueff(ϕ)

[

ǫχ2 −
χ2be

−αϕ

2(V (ϕ)−M1)

]2

,

(28)

1550133-9
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whereas the effective scalar field potential reads:

Ueff(ϕ) ≡
(V −M1)

2

4χ2[U +M2 + ǫ(V −M1)2]

=
(f1e

−αϕ −M1)
2

4χ2

[

f2e−2αϕ +M2 + ǫ(f1e−αϕ −M1)2
] , (29)

where the explicit form of V and U (3)–(4) are inserted. Further, the original gauge

coupling constants are here replaced by ϕ-dependent effective coupling constants:

feff(ϕ) = f0
(

1− 4ǫχ2Ueff(ϕ)
)

= f0
f2e

−2αϕ +M2

f2e−2αϕ +M2 + ǫ(f1e−αϕ −M1)2
, (30)

1

e2eff(ϕ)
= χ2

[

1

e2
+ ǫf2

0

(

1− 4ǫχ2Ueff(ϕ)
)

]

= χ2

[

1

e2
+ ǫf2

0

f2e
−2αϕ +M2

f2e−2αϕ +M2 + ǫ(f1e−αϕ −M1)2

]

. (31)

Let us recall that the dimensionless integration constant χ2 systematically appear-

ing in most relations is the ratio of the original second non-Riemannian integration

measure to the standard Riemannian one (12).

We observe that even if we start with no standard Maxwell kinetic term for the

gauge field, i.e. taking the limit e2 → ∞ in the original action (1)–(4), we neverthe-

less obtain a dynamically induced Maxwell term in the Einstein-frame action (27)

with effective running charge according to (31):

1

e2eff(ϕ)
= ǫχ2f

2
0

(f2e
−2αϕ +M2)

[

f2e−2αϕ +M2 + ǫ(f1e−αϕ −M1)2
] . (32)

From (32) we see that dynamical Maxwell term generation is a cumulative effect of

the simultaneous presence of the “confining” gauge field term
√
−F 2 and the R2

gravity term.

3. Flat Regions of the Effective Scalar Potential and

Nontrivial “Vacuum” Solutions

The explicit expressions for the effective potential Ueff(ϕ) (29), the scalar

(“k-essence”) kinetic terms’ coefficient functions A(ϕ) and B(ϕ) (28) and the effec-

tive gauge coupling constants (30)–(31) reveal the following crucial feature of the

Einstein-frame matter Lagrangian (27)–(31): the presence of two infinitely large flat

regions — one for large negative and one for large positive values of the scalar field

ϕ, where all of the above are essentially constant with respect to ϕ.

Depending on the sign of the integration constant M1 we obtain two types of

shapes for the effective scalar potential Ueff(ϕ) (29) depicted on Figs. 1 and 2.
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Fig. 1. Qualitative shape of the effective scalar potential Ueff (ϕ) (29) for M1 > 0.

-10 -5 5 10

Φ

0.2

0.4

0.6

0.8

U
eff

Fig. 2. Qualitative shape of the effective scalar potential Ueff (ϕ) (29) for M1 < 0.

For large negative values of ϕ we have for the effective potential and the coeffi-

cient functions in the Einstein-frame matter Lagrangian (27)–(31):

Ueff(ϕ) ≃ U(−) ≡
f2
1 /f2

4χ2(1 + ǫf2
1/f2)

, (33)

A(ϕ) ≃ A(−) ≡
1 + 1

2bf1/f2

1 + ǫf2
1 /f2

,

B(ϕ) ≃ B(−) ≡ ǫχ2
1 + bf1/f2 − b2/4ǫf2

1 + ǫf2
1/f2

,

(34)
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e2eff(ϕ) ≃ e(−) ≡
e2

χ2

1 + ǫf2
1/f2

1 + ǫf2
1/f2 + e2ǫf2

0

,

feff(ϕ) ≃ f(−) ≡
f0

1 + ǫf2
1/f2

.

(35)

This will be called “(−) flat region.” In the second flat region for large positive ϕ,

which will be called “(+) flat region” we have:

Ueff(ϕ) ≃ U(+) ≡
M2

1 /M2

4χ2(1 + ǫM2
1/M2)

, (36)

A(ϕ) ≃ A(+) ≡
M2

M2 + ǫM2
1

,

B(ϕ) ≃ B(+) ≡ ǫχ2
M2

M2 + ǫM2
1

,

(37)

e2eff(ϕ) ≃ e(+) ≡
e2

χ2

1 + ǫM2
1/M2

1 + ǫM2
1/M2 + e2ǫf2

0

,

feff(ϕ) ≃ f(+) ≡
f0

1 + ǫM2
1/M2

.

(38)

The scalar and gauge field equations of motion resulting from the Einstein-frame

Lagrangian (here Leff is considered function of ϕ, X , F 2):

1√−ḡ
∂µ

(√−ḡḡµν∂νϕ
∂Leff

∂X

)

− ∂Leff

∂ϕ
= 0 ,

∂ν

(√−ḡFµν ∂Leff

∂F 2

)

= 0

(39)

thanks to the presence of the two (±) large flat regions (33)–(35) and (36)–(38),

as well as due to the “k-essence”-type nonlinear dependence of Leff on the scalar

kinetic term, allow for the following two classes of nontrivial “vacuum” solutions:

(i) “Standard vacuum” containing standard constant “dilaton” vacuum plus non-

trivial gauge field vacuum:

ϕ = const → X = 0 ,
∂Leff

∂ϕ
= 0 ,

∂Leff

∂F 2
= 0 . (40)

Here, the value ϕ = const belongs to either the (−) flat region (33) or the (+)

flat region (36) of the effective scalar potential.

(ii) “Kinetic vacuum” (this type of “vacuum” exists thanks to the nonlinear with

respect to X “k-essence” nature of the effective Lagrangian (27)):

∂Leff

∂X
= 0 ,

∂Leff

∂ϕ
= 0 ,

∂Leff

∂F 2
= 0 . (41)
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In the first class of “standard vacuum” solutions the last Eq. (40) yields the

following nontrivial “vacuum” value for the gauge field:
√

−F 2
vac = e2eff(ϕ)feff(ϕ) , (42)

and for the associated matter energy–momentum tensor (cf. (22)) we get:

T eff
µν = ḡµνLeff

∣

∣

X=0,
∂Leff
∂F2 =0

= −ḡµνU
(standard)
total , (43)

where U
(standard)
total is the total effective scalar potential in the “standard vacuum”

(40):

U
(standard)
total = Ueff +

1

4
e2efff

2
eff = Ueff +

e2f2
0

(

1− 4ǫχ2Ueff

)2

4χ2

[

1 + e2ǫf2
0

(

1− 4ǫχ2Ueff

)] . (44)

In both (∓) flat regions (33)–(35) and (36)–(38) we have correspondingly:

√

−F 2
vac ≃

√

−F 2
(−) =

e2f0
χ2 (1 + ǫf2

1 /f2 + e2ǫf2
0 )

, (45)

√

−F 2
vac ≃

√

−F 2
(+) =

e2f0
χ2 (1 + ǫM2

1 /M2 + e2ǫf2
0 )

, (46)

and

U
(standard)
total ≃ U

(standard)
(−) ≡ 1

4ǫχ2

[

1− 1

1 + ǫf2
1/f2 + ǫe2f2

0

]

, (47)

U
(standard)
total ≃ U

(standard)
(+) ≡ 1

4ǫχ2

[

1− 1

1 + ǫM2
1/M2 + ǫe2f2

0

]

. (48)

Therefore, according to (43) the solutions of the Einstein-frame ḡµν -equations are

of de Sitter-type (pure de Sitter or Schwarzschild–de Sitter):

ds2 = ḡµν dx
µ dxν = −A(r)dt2 +

dr2

A(r)
+ r2(dθ2 + sin2 θ dφ) , (49)

A(r) = 1− Λ(±)

3
r2 , or A(r) = 1− 2m

r
− Λ(±)

3
r2 , (50)

in static spherically symmetric coordinate chart, with effective cosmological con-

stants Λ(±) given by (47)–(48):

Λ(−) ≡ Λ
(standard)
(−) =

1

2
U

(standard)
(−) in the (−) flat region (33)–(35) , (51)

Λ(+) ≡ Λ
(standard)
(+) =

1

2
U

(standard)
(+) in the (+) flat region (36)–(38) . (52)

From the above analysis of the “standard vacuum” solutions — the one correspond-

ing to ϕ = const belonging to the (−) flat region of the effective scalar potential

with nonzero gauge field vacuum value and vacuum energy density as in (45), (47),

and the second, the one corresponding to ϕ = const belonging to the (+) flat region

of the effective scalar potential with gauge field vacuum value and vacuum energy
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density as in (46), (48) — we conclude that these “standard vacuum”solutions de-

scribe charge confining phases with dynamically generated cosmological constants

(51) and (52).

Indeed, according to ’t Hooft’s confinement proposal,32,33 and as shown expli-

citly in Ref. 28 in the case of flat space–time, the nonzero vacuum values of the

gauge field (45), (46) imply confinement dynamics of charged particles with the

strength of confinement proportional to these same gauge field vacuum values.

Namely, under plausible truncation for static spherically symmetric configurations

the canonically quantized theory in flat space–time of charged fermions interacting

with the nonlinear gauge fields with the “square-root” Maxwell term produces an

effective “Cornell”-type potential Veff = −α
L
+ βL (see also Eq. (88)) between

quantized fermions separated by a distance L and where β is proportional to the

coupling constant of the “square-root” Maxwell term, which in turn is proportional

to the nonzero vacuum value of the gauge field.

The formalism to prove confinement used in Ref. 28 can be easily generalized

to the case of curved static spherically symmetric space–times, in particular for

de Sitter space–time where both charged fermions are located within the interior

de Sitter region below the de Sitter horizon (r ≤
√

3/Λ(±)) — see App. B.

4. “Kinetic Vacuum” Solutions

We now turn our attention to the second class of “kinetic vacuum” solutions (41).

The equations ∂Leff

∂X
= 0 and ∂Leff

∂F 2 = 0 yield:

Xkin = − A

2B

1− ǫχ2f0feffe
2
eff

1− ǫ2χ2
2f

2
0 e

2
effA

2/B
, (53)

√

−F 2
kin = e2eff

feff − ǫχ2f0A
2/B

1− ǫ2χ2
2f

2
0 e

2
effA

2/B
. (54)

Using the identity ∂Leff

∂X
= 2BX+A(1−ǫχ2f0

√
−F 2) we can rewrite the Einstein-

frame Lagrangian Leff (23) in the form:

Leff =
1

4B

(

∂Leff

∂X

)2

− Ũ(ϕ, F 2) , (55)

with

Ũ(ϕ, F 2) = Ueff +
A2

4B
− 1

2

√

−F 2

(

feff − ǫχ2f0
A2

B

)

− 1

4
F 2

(

1

e2eff
− ǫ2χ2

2f
2
0

A2

B

)

. (56)

Inserting in (55)–(56) the “on-shell” values (53)–(54), we obtain for the matter

energy–momentum tensor:

T eff
µν = ḡµνLeff

∣

∣

∂Leff
∂X

=0,
∂Leff
∂F2 =0

= −ḡµνU
(kinetic)
total , (57)
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where U
(kinetic)
total is the total effective scalar potential in the “kinetic vacuum” (41):

U
(kinetic)
total = Ueff +

A2

4B
+

1

4
e2eff

(

feff − ǫχ2f0
A2

B

)2

1− e2effǫ
2χ2

2f
2
0
A2

B

. (58)

Note from Eqs. (55)–(56) that within the “kinetic vacuum” ∂Leff

∂X
= 0 the effec-

tive gauge coupling constants become:

f̃eff = feff − ǫχ2f0
A2

B
, ẽ2eff =

e2eff
1− e2effǫ

2χ2
2f

2
0
A2

B

. (59)

4.1. “Kinetic vacuum” in the (+) flat region of

effective scalar potential

First, we consider the “kinetic vacuum” solution in the (+) flat region. Using (36)–

(38) in (54), (53) and (58) we obtain from (59):

f̃eff ≡ f̃(+) = f(+) − ǫχ2f0
A2

(+)

B(+)
= 0 , (60)

which yields:

√

−F 2
kin

∣

∣

∣

(+)
= 0 , Xkin ≃ X(+) = − A(+)

2B(+)
= − 1

2ǫχ2
, (61)

U
(kinetic)
total ≃ U

(kinetic)
(+) =

1

4ǫχ2
→ T eff

µν = −ḡµν
1

4ǫχ2
, (62)

i.e. we have here an effective cosmological constant:

Λ(+) ≡ Λ
(kinetic)
(+) =

1

8ǫχ2
. (63)

Let us particularly stress on the first relation in (61) — the zero vacuum value

for the nonlinear gauge field, which is due to the vanishing (60) of the effective

coupling constant of the “square-root” Maxwell term. Again, in accordance with

’t Hooft’s confinement proposal32,33 and as demonstrated explicitly in Ref. 28 and

in App. B the latter implies absence of confinement of charged particles, i.e. the

“kinetic vacuum” (61)–(62) describes a deconfinement phase.

According to (57) and (62)–(63) the solutions of the Einstein-frame ḡµν-

equations in the “kinetic vacuum” are again of de Sitter-type (49)–(50) with Λ(+)

given by (63).

The equation for the “dilaton” “kinetic vacuum” (second Eq. (61)) reads

explicitly:

ḡµν∂µϕ∂νϕ− 1

ǫχ2
= 0 . (64)

It has precisely the form of Hamilton–Jacobi equation for the Hamilton–Jacobi

action:

S(x) ≡ ϕ(x) =
1√
ǫχ2

∫ λout

λin

dλ

√

gµν(x(λ))
dxµ

dλ

dxν

dλ
, (65)
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corresponding to spacelike geodesics xµ(λ) starting from some fixed point x(0) (e.g.

x(0) = 0) at a fixed value of the affine parameter λin and passing through x =

x(λout) at λout. This Hamilton–Jacobi action (65) measures the proper distance

between the points x(0) and x on the manifold modulo the numerical factor 1/
√
ǫχ2

(for modern pedagogical exposition, see, e.g. Ref. 41).

A static spherically symmetric solution for ϕ(x) is given by:
(

∂ϕ

∂r

)2

=
1

ǫχ2 A(r)
→ ϕ(r) = ϕ(+) +

1√
ǫχ2

∫ r dr′
√

A(r′)
, (66)

where the initial value ϕ(+) must belong to the (+) flat region (36)–(38) (large

positive ϕ).

In the case of pure de Sitter metric (49)–(50) the solution ϕ(r) (66), measuring

the proper radial distance between 0 and r, is clearly defined only for r in the

interval r ∈
(

0, r(+)

)

, where

r(+) =
√

24ǫχ2 , (67)

is the de Sitter horizon radius. The solution ϕ(r) reads explicitly:

ϕ(r) = ϕ(+) +
√
24 arcsin

(

r

r(+)

)

, (68)

where the initial value ϕ(+) belongs to the (+) flat region of the effective scalar

potential. Let us also recall that the integral in the second Eq. (66), which is equal

to r(+) arcsin
(

r
r(+)

)

, yields the proper radial distance in the internal de Sitter region

r ≤ r(+).

In the case of Schwarzschild–de Sitter metric (49)–(50) the solution ϕ(r) (66) is

defined in the interval r ∈ (rS , rH) between the inner (Schwarzschild-type) horizon

rS and the outer (de Sitter-type) horizon rH . In what follows, we will consider the

case of pure de Sitter metric.

Since the “kinetic vacuum” corresponding to the (+) flat region described by

(61)–(68) is defined only within the finite-volume space region below the de Sitter

horizon, in order to be extended to the whole space it must be matched to another

spherically symmetric configuration with the standard constant “dilaton” vacuum

defined in the outer region beyond the de Sitter horizon with

ϕ = ϕ(r(+)) = ϕ(+) +
√
6π = const for r > r(+) , (69)

where the latter is the limiting value of (68) at the horizon. The corresponding

construction yields a gravitational bag-like solution mimicking both some of the

features of the MIT bags in QCD phenomenology1,2 as well as some of the features

of the “constituent quark” model of Ref. 37 to be discussed in the next section.

4.2. “Kinetic vacuum” in the (−) flat region of

effective scalar potential

Next, let us consider the “kinetic vacuum” solution corresponding to the (−)

flat region. In this case using (33)–(35) in (54), (53) and (58) and introducing
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short-hand notations for some combinations of the parameters to simplify the result-

ing expressions:

ξ ≡ b
f1
f2

, γ ≡ f2
4ǫf2

1

, β ≡ e2
f2
0f

2
2

16ǫf4
1

= ǫe2f2
0 γ

2 , (70)

we obtain:
√

−F 2
kin ≃

√

−F 2
kin

∣

∣

∣

(−)
=

βξ4

ǫχ2(1 + ξ − ξ2γ)[1 + ξ − ξ2γ(1 + β/γ2)]
, (71)

Xkin ≃ X(−) = − 1

2ǫχ2

1 + ξ/2

1 + ξ − ξ2γ(1 + β/γ2)
, (72)

U
(kinetic)
total ≃ U

(kinetic)
(−) =

1

4ǫχ2

1 + ξ − ξ2β/γ

1 + ξ − ξ2γ(1 + β/γ2)
, (73)

T eff
µν = −ḡµνU

(kinetic)
(−) ≡ −ḡµν2Λ(−) . (74)

The space–time metric is again of de Sitter-type (49)–(50) with effective cosmo-

logical constant:

Λ(−) ≡ Λ
(kinetic)
(−) =

1

8ǫχ2

1 + ξ − ξ2β/γ

1 + ξ − ξ2γ(1 + β/γ2)
. (75)

According to Eq. (71) the vacuum value of the gauge field is nonzero (except

in the special case ξ = 0, see (83)), therefore, following ’t Hooft’s confinement

proposal32,33 and Refs. 27–31 we conclude that the “kinetic vacuum” (71)–(73)

supports dynamics of charged particles as in the “standard vacuum” phase (40)

except in the special case ξ = 0.

The qualitative shape of the “kinetic vacuum” energy density in the (−) flat

region U
(kinetic)
(−) (ξ) (73) as function of the parameter ξ ≡ b f1

f2
(70) is depicted in

Fig. 3.

U
(kinetic)
(−) (ξ) has a local minimum at ξ = 0, i.e. at b = 0 where

U
(kinetic)
(−) (0) = 1/4ǫχ2 , (76)

and it raises to +∞ at ξ = ξ
(±)
γ which are the roots of the quadratic expression

1 + ξ − ξ2γ(1 + β/γ2:

ξ(±)
γ =

1

2γ(1 + β/γ2)

[

1±
√

1 + 4γ(1 + β/γ2)
]

. (77)

Alternatively, for large |ξ|, U (kinetic)
(−) (ξ → ±∞) = 1

4ǫχ2

(

1 + 1/ǫe2f2
0

)−1
.

The scalar field for static spherically symmetric configurations is given by:
(

∂ϕ

∂r

)2

= −2
X(−)

A(r)
, (78)

therefore, solutions exist only for the range of parameters for which X(−) < 0. From

the explicit expression (72) we find:

X(−) < 0 for ξ(−)
γ < ξ < ξ(+)

γ and for ξ < −2 , (79)
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Fig. 3. Qualitative shape of the “kinetic vacuum” energy density (73) as function of ξ ≡
b
f1
f2

(70).

where ξ
(±)
γ are the same as in (77). Thus, the solution of (78) is similar to (68):

ϕ(r) = ϕ(−) +
√

2|X(−)|
∫ r dr′

√

A(r′)

= ϕ(−) +
√

2|X(−)|r(−) arcsin

(

r

r(−)

)

, (80)

where the initial value ϕ(−) must belong to the (−) flat region (33)–(35) (large

negative ϕ), r(−) is the de Sitter horizon radius:

r(−) =

√

3

Λ(−)

(

Λ(−) as in (75)
)

, (81)

|X(−)| is given by (72), and again ϕ(r) is defined only in the space region inside the

de Sitter horizon (r ≤ r(−)).

Thus, similarly to the previous case for the (+) flat region, here in the (−) flat

region again we need to match the “kinetic vacuum” given by (71)–(80) to another

spherically symmetric configuration with the standard constant dilaton vacuum:

ϕ = ϕ(r(−)) = ϕ(−) + πr(−)

√

∣

∣X(−)

∣

∣

2
= const for r > r(−) , (82)

defined in the outer region, where ϕ(r(−)) is the limiting value of ϕ(r) (80) at the

horizon. This will be considered in the next section.
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Let us specifically note that in the special case ξ ≡ b f1
f2

= 0, i.e. for b = 0 meaning

that in this case the noncanonical scalar kinetic term is absent from the original

second Lagrangian L(2) (4), the expressions (71)–(73) and (75), (81) drastically

simplify:

(
√

−F 2
kin

∣

∣

(−)

)∣

∣

∣

ξ=0
= 0 , X(−)|ξ=0 = − 1

2ǫχ2
, U

(kinetic)
(−)

∣

∣

∣

ξ=0
=

1

4ǫχ2
,

Λ
(kinetic)
(−)

∣

∣

∣

ξ=0
=

1

8ǫχ2
, r(−)|ξ=0 =

√

24ǫχ2 .

(83)

Expressions (83) precisely coincide with the corresponding values of
√

−F 2
kin

∣

∣

(+)
=

0,X(+), U
(kinetic)
(+) , Λ

(kinetic)
(+) , r(+) (61)–(63), (67) in the (+) flat region of the effective

scalar potential. In particular, from the first relation in (83) we conclude that in

the special case ξ = 0 (b = 0) the corresponding “kinetic vacuum” on the (−) flat

region of the effective scalar potential implies deconfinement in complete analogy

with the “kinetic vacuum” on the (+) flat region (Subsec. 4.1).

5. Gravitational Bag-like Solutions

5.1. Matching “kinetic vacuum” to standard constant “dilaton”

vacuum in (+) flat region

First, we construct matching of the “kinetic vacuum” in (+) flat region of the

effective scalar potential given by de Sitter metric (49)–(50) in the interior region
(

r < r(+)

)

below the de Sitter horizon r(+) =
√
24ǫχ2 with effective cosmological

constant (63) and by Eqs. (61)–(68), to a static spherically symmetric configura-

tion containing the standard constant “dilaton” vacuum (69) in the outer region
(

r > r(+)

)

beyond the de Sitter horizon. The “matching” specifically means that

the “dilaton” field, the gauge field strength and the metric with its first derivatives

must be continuous across the horizon, in particular, the de Sitter horizon of the

interior metric must coincide with a horizon of the exterior metric.

Obviously, the static spherically symmetric configuration in the outer region

cannot be the “standard vacuum” of the full “dilaton” plus gauge field subsystem

given by (40), (42) and (48), since:

(a) In the inner “kinetic vacuum” region
√

−F 2
kin

∣

∣

(+)
= 0 (first Eq. (61)), whereas

in the outer “standard vacuum” region
√

−F 2
(+) 6= 0 (46), which would imply

that there should be a lightlike (“null”) brane with a nonzero surface electric

charge density located on de Sitter horizon to account for the jump of the gauge

field strength across the horizon.

(b) The effective cosmological constant in the outer “standard vacuum” region (52)

is different and smaller than the effective cosmological constant (63) in the inner

“kinetic vacuum” region.
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In Refs. 42 and 43 (see also the earlier works34–36) we have already explicitly

derived static spherically symmetric solutions of the coupled gravity/nonlinear

gauge field/scalar “dilaton” system (27) with a generalized Reissner–Nordström–

(anti-)de Sitter geometry carrying a nonvanishing background constant radial elec-

tric field in addition to the standard Coulomb field. We will use this type of solution

in the outer region beyond the de Sitter horizon to be matched with the “kinetic

vacuum” (61)–(68) in the interior region.

Specifically, for r > r(+) =
√
24ǫχ2 the solution reads42,43 (the additional

factor 1
16π in Eq. (85) is due to the adopted normalization for the Newton con-

stant GNewton = 1/16π):

ds2 = −Aout(r)dt
2 +

dr2

Aout(r)
+ r2(dθ2 + sin2 θ dφ) , (84)

Aout(r) = 1 +
1

16π

[

−
√
8π|Q|f(+) −

2m

r
+

Q2

e2(+) r
2

]

− Λout

3
r2 , (85)

Λout =
1

2
U

(standard)
(+) =

1

8ǫχ2

[

1− 1

1 + ǫM2
1 /M2 + ǫe2f2

0

]

(as in (48), (52)) ,

√

−F 2
out(r) =

√
2|Eout(r)| = e2(+)f(+) −

|Q|√
2π r2

(

e2(+), f(+) as in (38)
)

,

(86)

ϕ = ϕ(r(+)) = const (as in (69)) . (87)

Notice that in (86) we have taken the constant radial background electric field and

the Coulomb field with opposite directions. Let us also point out that the scalar

potential corresponding to the static radial electric field in (86):

Er
out = −F0r = ∂rA0(r) , A0(r) =

1√
2
e2(+)f(+)r +

|Q|√
4π r

, (88)

which is a static spherically symmetric solution of the nonlinear gauge field equa-

tions (last Eq. (39) with Leff as in (27) and with X = 0 — “standard dila-

ton vacuum”), resembles the form of the well-known phenomenological “Cornell

potential” in QCD which contains both a linear confining and a standard Coulomb

part.44–46

The mass and electric charge parameters (m,Q) in (85) are to be determined

from the matching at the common horizon:

Aout

(

r(+)

)

= Ain

(

r(+)

)

= 0 , ∂rAout

(

r(+)

)

= ∂rAin

(

r(+)

)

, (89)
√

−F 2
out

(

r(+)

)

=
√

−F 2
kin

∣

∣

(+)
= 0 (according to first Eq. (61)) , (90)
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with the “kinetic vacuum” (61)–(68) for r < r(+) =
√
24ǫχ2 with:

ds2 = −Ain(r)dt
2 +

dr2

Ain(r)
+ r2

(

dθ2 + sin2 θ dφ
)

, (91)

Ain(r) = 1− Λin

3
r2 , Λin =

1

2
U

(kinetic)
(+) =

1

8ǫχ2
. (92)

Inserting (86) into (90) we determine Q:

|Q| =
√
2πe2(+)f(+)24ǫχ2 =

√
2π24ǫe2f0

1 + ǫM2
1 /M2 + e2ǫf2

0

. (93)

Now, inserting (93) into (89) yields:

m = 0 , (94)

and the following relation between the integration constants M1,2 and the initial

coupling constants ǫ, e, f0:

1 + ǫ
M2

1

M2
− 3ǫf2

0 e
2 = 0 . (95)

To recapitulate, we have obtained the following “vacuum-like” solution:

• In the inner space region r < r(+) =
√
24ǫχ2 we have an interior de Sitter region

(91)–(92) below the de Sitter horizon at r = r(+) with effective cosmological con-

stant (92), with vanishing vacuum gauge field (first Eq. (61)), “kinetic vacuum”

scalar “dilaton” according to (68) and vacuum energy density (62):

ρin ≃ U
(kinetic)
(+) =

1

4ǫχ2
. (96)

• In the outer space region r > r(+) =
√
24ǫχ2 we have static spherically symmetric

metric (85) with:

Aout(r) = 1− 1

2ǫe2f2
0

+
6χ2

e2f2
0

1

r2
− r2

24ǫχ2

(

1− 1

4ǫe2f2
0

)

, (97)

where we have used the explicit expressions for e2(+), f(+) (38), Q (93) and

U
(standard)
(+) (48) together with the relation (95). The metric with (97) has de Sitter-

type horizon again at r = r(+) where the relation (95) among the parameters

holds.

• The outside nonlinear gauge field (86) is a static radial electric field of the explicit

form:
√

−F 2
out(r) =

√
2
∣

∣Er
out(r)

∣

∣ =
1

4ǫχ2f0

(

1− 24ǫχ2

r2

)

, (98)

where again we have used (38) and (95). In (98) there is a Coulomb piece in

addition to a nonzero background constant radial electric field:
∣

∣Er
background

∣

∣ =
1√
2
e2(+)f(+) =

1√
24ǫχ2f0

. (99)

Thanks to the latter, the Coulomb field is completely cancelled at the horizon.
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• The scalar “dilaton” is constant (87) and the energy density (ρ = −T 0
0 ) reads

(using again (38), (48) and (95)):

ρout(r) ≃ U
(standard)
(+) − e2(+)f

2
(+)

(

r2(+)

2r2
−

r4(+)

4r4

)

=
1

4ǫχ2

(

1− 1

4ǫe2f2
0

)

− 1

ǫe2f2
0 r

2

(

1− 24ǫχ2

r2

)

. (100)

Obviously (recall in (100) r > r(+) ≡
√
24ǫχ2):

ρout(r) ≤ U
(standard)
(+) =

1

4ǫχ2

[

1− 1

1 + ǫM2
1/M2 + ǫe2f2

0

]

< ρin =
1

4ǫχ2
. (101)

The above solution (84)–(101) is a gravitational bag-like configuration on the

(+) flat region of the effective scalar potential which mimics some of the properties

of the MIT bag.1,2 Indeed, as already noticed in Sec. 3:

(i) In the inner finite volume space region below the horizon
(

r < r(+)

)

the vanish-

ing vacuum value of the gauge field (first Eq. (61)) implies absence of confine-

ment of charged particles.27–31

(ii) According to (101) the vacuum energy density ρin in the inner finite volume

space region (for r < r(+)) is larger than the energy density ρout in the outside

region.

There are, however, other properties of the present gravitational “bag” solu-

tion which are substantially different from those of the MIT bag and which

rather resemble some of the properties of the solitonic “constituent quark”

model:37

(a) It is charged (the overall charge Q is nonzero (93)).

(b) It carries nonzero “color” flux to infinite — because of the nonzero back-

ground constant radial electric field (99).

5.2. Matching “kinetic vacuum” to standard constant “dilaton”

vacuum in (−) flat region

Using the same procedure above we can construct the matching of the “kinetic vac-

uum” (71)–(80) in (−) flat region of the effective scalar potential given by de Sitter

metric (49)–(50) in the corresponding interior region
(

r < r(−)

)

below the de Sitter

horizon r(−) (81), with effective cosmological constant (75), to a static spherically

symmetric configuration containing the standard constant “dilaton” vacuum (82)

in the outer region
(

r > r(−)

)

beyond the de Sitter horizon.

In the special case ξ = 0 (b = 0), as already noted in (83) above, the expressions

(71)–(73) and (75) in the (−) flat region precisely coincide with the corresponding

expressions (61)–(63), (67) in the (+) flat region. Taking into account (83) and the

explicit form of e(−), f(−) (35) versus e(+), f(+) (38) and repeating the same steps

as in Subsec. 5.1 we obtain in the special case b = 0 a completely analogous solution
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for the matching of interior “kinetic vacuum” (71)–(80) corresponding to the (−)

flat region of the effective scalar potential with the exterior region with the same

generalized Reissner–Nordström–de Sitter geometry carrying a nonzero constant

radial background electric field as in (84)–(86) with (93)–(94) upon substitution
(

e(+), f(+)

)

→
(

e(−), f(−)

)

and M1,2 → f1,2. In particular, instead of (95) we now

obtain the following relation among the parameters of the model:

1 + ǫ
f2
1

f2
− 3ǫf2

0 e
2 = 0 . (102)

For the energy densities inequality instead of (101) we now have:

ρout(r) ≤
1

4ǫχ2

[

1− 1

1 + ǫf2
1 /f2 + ǫe2f2

0

]

< ρin =
1

4ǫχ2
. (103)

Thus, in the special case ξ = 0 (b = 0) we obtain a gravitational bag-like configu-

ration on the (−) flat region of the effective scalar potential with the same properties

as those of the gravitational bag solution in Subsec. 5.1 above — properties (i)–(ii)

and (a)–(b).

One can straightforwardly extend the above solution to the general case of the

parameter b 6= 0 (i.e. ξ 6= 0). However, the explicit expressions for the parameters

Q and m in the exterior generalized Reissner–Nordström–de Sitter metric carrying

a nonzero constant radial background electric field as well as the generalization

of relation (102) among the theory’s parameters become algebraically much more

complicated. In particular, now the mass parameterm 6= 0. Moreover, in the general

case of b 6= 0 (ξ 6= 0) the vacuum value of the gauge field (71)) in the inner finite

volume space region below the de Sitter horizon (r < r(+)) is nonvanishing, thus

again implying confinement dynamics of charge particles as in the outer space region

beyond the de Sitter horizon (r > r(−) (81)) where we have nonzero constant radial

background electric field |Ebackground| = 1√
2
e2(−)f(−) (the counterpart of (99)). On

the other hand, according to (103) the vacuum energy density ρin in the inner finite

volume space region is larger than the energy density ρout in the outside region.

Therefore, in the general case b 6= 0 (ξ 6= 0) the “vacuum-like” solution describ-

ing the matching of “kinetic vacuum” to standard constant “dilaton” vacuum in the

(−) flat region of the effective scalar potential is a gravitational bag-like solution

which shares some of the properties of the “constituent quark” model (proper-

ties (a)–(c) in Subsec. 5.1 above), however, it does not at all mimic the proper-

ties (i)–(iii) of MIT bag unlike the gravitational bag-like solution of Subsec. 5.1.

6. Conclusions

In the present paper, we have constructed a new kind of gravity-matter theory

coupled to a nonstandard nonlinear gauge theory with the following noteworthy

features:

• Instead of the canonical Riemannian space–time volume-form (generally covari-

ant integration measure density in terms of
√−g), to construct the action of the
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model we are employing two different and independent non-Riemannian space–

time volume-forms defined in terms of two auxiliary antisymmetric tensor gauge

fields of maximal rank.

• The action of our model contains apart from the standard Einstein–Hilbert R

and Maxwell gauge field −F 2 Lagrangian terms also scalar “dilaton” parts with a

noncanonical kinetic term, as well as additional R2 and a “square-root” Maxwell

term
√
−F 2. The specific form of our action is dictated by the requirement of

global Weyl-scale invariance.

• Solving the equations of motion for the auxiliary antisymmetric tensor gauge

fields building up the two non-Riemannian space–time volume-forms introduces

several arbitrary integration constants, some of them spontaneously breaking the

global Weyl-scale symmetry of the initial action.

• The physical meaning of the above arbitrary integration constants is revealed

within the canonical Hamiltonian formalism, namely, these integration constants

turn out to be conserved Dirac-constrained canonical momenta conjugated to

some of the components of the auxiliary antisymmetric tensor gauge fields of

maximal rank, the latter turning out to be essentially pure gauge nonpropagating

degrees of freedom.

• After passing to the physical “Einstein frame” thanks to the appearance of the

above arbitrary integration constants we obtain a remarkable effective matter

Lagrangian of quadratic “k-essence” type. First, the latter contains an effective

scalar “dilaton” potential of a very interesting form possessing two infinitely large

flat regions for large negative and large positive “dilaton” ϕ values. Second, all

the remaining terms in the “k-essence” matter Lagrangian appear multiplied by

nontrivial “dilaton”-dependent coefficient functions, including nontrivial effective

gauge coupling constants running with ϕ.

• We study systematically the static spherically symmetric “vacuum”-like configu-

rations corresponding to each of the flat regions of the effective scalar potential.

• First, we find two globally existing in space phases corresponding to the standard

constant “dilaton” vacuum values either in either of the two infinitely large flat

regions. These both phases describe confinement since in both cases the vacuum

value of the nonlinear gauge field is nonzero.

• Further, we find two localized in space (in “bubbles”) deconfining (confinement

free) phases corresponding to the so-called “kinetic dilaton vacuum” (when the

quadratic “k-essence” effective action in the Einstein frame is extremized with

respect to X — the “dilaton” kinetic term), where the vacuum value of the non-

linear gauge field vanishes. In one of these deconfining phases the “dilaton” lies

on the (+) flat region of the effective scalar potential and in the second one

it belongs to the (−) flat region with the additional restriction on the Lagran-

gian parameter b = 0. On the other hand, in the generic case of b 6= 0 the

“kinetic dilaton vacuum” on the (−) flat region describes a localized confin-

ing phase since the vacuum value of the nonlinear gauge field is again nonzero

there.
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• The localized deconfining phases inside the “bubbles” coexist with outside con-

figurations corresponding to standard constant “dilaton” vacuums and nontrivial

nonlinear gauge fields carrying nonzero constant radial background electric field.

The energy density inside the “bubbles” is larger that the outside energy density.

Thus, the full solution inside and outside the “bubbles” is a gravitational bag-like

solution mimicking some of the basic properties of the MIT bag.1,2

• On the other hand, the analogy of the above gravitational bag with the MIT

bag is only partial one. The present gravitational bag possess other properties

(overall charge, carrying nonzero “color” flux to infinity) which resemble some of

the main properties of the solitonic “constituent quark” model.37
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Appendix A. Canonical Hamiltonian Treatment of Gravity-Matter

Theories with non-Riemannian Volume-Forms

Here, we will briefly discuss the application of the canonical Hamiltonian form-

alism to the new gravity-matter model based on two non-Riemannian space–time

volume-forms (1). In order to elucidate the proper physical meaning of the arbi-

trary integration constants χ2, M1, M2 (14) encountered within the Lagrangian

formalism’s treatment of (1) it is sufficient to concentrate only on the canonical

Hamiltonian structure related to the auxiliary maximal rank antisymmetric tensor

gauge fields Aµνλ, Bµνλ, Hµνλ and their respective conjugate momenta.

For convenience let us introduce the following short-hand notations for the field-

strengths (2), (6) of the auxiliary 3-index antisymmetric gauge fields (the dot indi-

cating time-derivative):

Φ1(A) = Ȧ+ ∂iA
i , A =

1

3!
εijkAijk , Ai = −1

2
εijkA0jk , (A.1)

Φ2(B) = Ḃ + ∂iB
i , B =

1

3!
εijkBijk , Bi = −1

2
εijkB0jk , (A.2)

Φ(H) = Ḣ + ∂iH
i , H =

1

3!
εijkHijk , Hi = −1

2
εijkH0jk . (A.3)

Also we will use the short-hand notation:

L̃(1)(u, u̇) ≡ R+ L(1) , L̃(2)(u, u̇) ≡ L(2) + ǫR2 , (A.4)
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where L(1,2) are as in (3)–(4) and where (u, u̇) collectively denote the set of the

basic gravity-matter canonical variables (u) =
(

gµν , ϕ, Aµ

)

and their respective

velocities.

For the pertinent canonical momenta conjugated to (A.1)–(A.3) we have:

πA = L̃1(u, u̇) , πB = L̃(2)(u, u̇) +
1√−g

(Ḣ + ∂iH
i) ,

πH =
1√−g

(Ḃ + ∂iB
i) ,

(A.5)

and

πAi = 0 , πBi = 0 , πHi = 0 . (A.6)

The latter imply that Ai, Bi, Hi will in fact appear as Lagrange multipliers for

certain first-class Hamiltonian constraints (see Eqs. (A.10)–(A.11)). For the canon-

ical momenta conjugated to the basic gravity-matter canonical variables we have

(using last relation (A.5)):

pu = (Ȧ+ ∂iA
i)

∂

∂u̇
L̃1(u, u̇) + πH

√−g
∂

∂u̇
L(2)(u, u̇) . (A.7)

Now, relations (A.5) and (A.7) allow us to obtain the velocities u̇, Ȧ, Ḃ, Ḣ

as functions of the canonically conjugate momenta u̇ = u̇(u, pu, πA, πB, πH), etc.

(modulo some Dirac constraints among the basic gravity-matter variables due to

general coordinate and gauge invariances). Taking into account (A.5)–(A.6) (and

the short-hand notations (A.1)–(A.4)) the canonical Hamiltonian corresponding

to (1):

H = puu̇+ πAȦ+ πBḂ + πHḢ − (Ȧ+ ∂iA
i)L̃1(u, u̇)

− πH

√−g

[

L̃(2)(u, u̇) +
1√−g

(Ḣ + ∂iH
i)

]

, (A.8)

acquires the following form as function of the canonically conjugated variables (here

u̇ = u̇(u, pu, πA, πB , πH)):

H = puu̇− πH

√
−g L̃(2)(u, u̇) +

√
−gπHπB

− ∂iA
iπA − ∂iB

iπB − ∂iH
iπH . (A.9)

From (A.9) we deduce that indeed Ai, Bi, Hi are Lagrange multipliers for the first-

class Hamiltonian constraints:

∂iπA = 0 → πA = −M1 = const , (A.10)

and similarly:

πB = −M2 = const , πH = χ2 = const , (A.11)

which are the canonical Hamiltonian counterparts of Lagrangian constraint equa-

tions of motion (14).
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Thus, the canonical Hamiltonian treatment of (1) reveals the meaning of the

auxiliary 3-index antisymmetric tensor gauge fields Aµνλ, Bµνλ, Hµνλ — building

blocks of the non-Riemannian space–time volume-form formulation of the modi-

fied gravity-matter model (1). Namely, the canonical momenta πA, πB, πH con-

jugated to the “magnetic” parts A, B, H (A.1)–(A.3) of the auxiliary 3-index

antisymmetric tensor gauge fields are constrained through Dirac first-class con-

straints (A.10)–(A.11) to be constants identified with the arbitrary integration

constants χ2, M1, M2 (14) arising within the Lagrangian formulation of the model.

The canonical momenta πi
A, π

i
B , π

i
H conjugated to the “electric” parts Ai, Bi, Hi

(A.1)–(A.3) of the auxiliary 3-index antisymmetric tensor gauge field are vanishing

(A.6) which makes the latter canonical Lagrange multipliers for the above Dirac

first-class constraints.

Appendix B. “Cornell”-Type Confining Potential in

Curved Space Time

Here, we will follow the steps of the derivation in Ref. 28 of effective “Cornell”-type

confining potential44–46 between quantized charged fermions based on the general

formalism47 for quantization within the canonical Hamiltonian approach à la Dirac

of truncated gauge and gravity theories by imposing explicitly spherical symmetry

on the pertinent Lagrangian action.

In the present case the corresponding nonlinear gauge field action:

S =

∫

d4x
√−g

[

L(F 2) +AµJ
µ
]

, L(F 2) = −1

4
F 2 − f0

2

√

−F 2 (B.1)

yields equations of motion:

∂ν
(√−g4L′(F 2)Fµν

)

+
√−gJµ = 0 ,

L′(F 2) = −1

4

(

1− f0√
−F 2

)

,
(B.2)

whose µ = 0 component — the nonlinear “Gauss law” constraint equation reads:

1√−g
∂i
(√−gDi

)

= J0 , Di =

(

1− f0√
−F 2

)

F 0i , (B.3)

with D ≡ (Di) denoting the electric displacement field nonlinearly related to the

electric field E ≡
(

F 0i
)

as in the last relation (B.3).

In the special case of nonlinear gauge field theory (B.1) there exists a nontrivial

vacuum solution
√

−F 2
vac = f0, which implies simultaneous vanishing of the electric

displacement field, D = 0 meaning zero observed charge, and at the same time

nontrivial electric field. In particular, for static spherically symmetric fields in static

spherically symmetric metric (of the form (49) with generalA(r)) the only surviving

component of Fµν is the nonvanishing radial component of the electric field Er =

−F0r, so that
√

−F 2
vac =

√
2|E| = f0. This can be viewed as the simplest classical

manifestation of charge confinement: D = 0 and nontrivial E.
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Here, we will employ the canonical Hamiltonian treatment in Ref. 47 and will

truncate the nonlinear gauge field action to purely spherically symmetric fields, i.e.

we will take F0r = ∂0Ar − ∂rA0 independent of the space angles and the rest of the

components of Fµν being zero. The action of the truncated theory reads:

Struncated =

∫

dt

∫

dr 4πr2
[

1

2
F 2
0r −

f0√
2
|F0r |+A0J

0 +ArJ
r

]

. (B.4)

Note that in (B.4) there is no explicit dependence on the Riemannian metric coeffi-

cient A(r) = −g00 = 1/grr. It is now straightforward to apply the canonical Hamil-

tonian quantization procedure to (B.4) within the Dirac formalism for constrained

dynamical systems (e.g. Ref. 48). Obviously, in the case of de Sitter space–time the

radial coordinate r must be restricted to vary up to the de Sitter horizon radius rH .

The canonically conjugated momenta with respect to A0 and Ar read:

Π0 = 0 , Πr = 4πr2
(

F0r −
f0√
2

)

, (B.5)

where the first one Π0 = 0 is the standard primary Dirac constraint known in any

gauge theory of Yang–Mills-type. For the density of the canonical Hamiltonian one

obtains:

H =
1

8πr2
(Πr)2 +

f0√
2
Πr + πr2f2

0 −ArJ
r +Πr∂rA0 − J0A0 . (B.6)

Henceforth, for simplicity we will consider the case with no matter current Jr = 0.

Time preservation of the primary constraint Π0 = 0, i.e. d
dt
Π0 = {Π0,H}PB = 0

yields the standard secondary Dirac constraint — the “Gauss law” constraint:

Φ1(r) ≡ ∂rΠ
r + J0 = 0 . (B.7)

Thus, one has to Dirac-canonically quantize the theory with canonical Hamil-

tonian:

H =

∫

dr

[

1

8πr2
(Πr)2 +

f0√
2
Πr + πr2f2

0

]

(B.8)

and with two first-class à la Dirac constraints Φ0,1 = 0 (Φ0 ≡ Π0 = 0 and Φ1 = 0 as

in (B.7)), which have to be supplemented by two canonically conjugate gauge-fixing

conditions χ0,1. Since A0 and its conjugate momentum Π0 = 0 do not mix with the

rest of the canonical variables they have no impact on the pertinent Dirac brack-

ets between Ar and Πr to be promoted to quantum operator commutators upon

quantization. Thus, we only need to choose an appropriate gauge fixing condition

for the “Gauss law” constraint (B.7), which we can take in the form:

χ1(r) ≡
∫

C(r)

dzλ Aλ(z) . (B.9)

Here
∫

C(r) is path integral along a spacelike geodesic xλ = xλ(ξ) ending at the

space–time point with radial coordinate r. In particular, for the interior de Sitter
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region (r ≤ rH) this spacelike geodesic can be taken in the form:

t(ξ) = t = const , r(ξ) = rH sin

(

ξ

rH

)

,

0 ≤ ξ ≤ ξfin ≤ rH
π

2
, r(ξfin) = r ,

(B.10)

where ξ is the de Sitter proper distance parameter, so that:

χ1(r) ≡
∫ r

0

dz Ar(z) ,
{

Φ1(r), χ1(r
′)
}

PB
= δ(r − r′) . (B.11)

Note that here and below δ(r− r′) denotes the Dirac delta-function on the half-line

(both r, r′ > 0).

It is now straightforward to calculate the Dirac bracket between the canonically

conjugate pair given by:

{

Ar(r),Π
r(r′)

}

DB
=
{

Ar(r),Π
r(r′)

}

PB
−
∫∫

dr′′ dr′′′
{

Ar(r),Φ1(r
′′)
}

PB

×
{

Φ1(r
′′), χ1(r

′′′)
}−1

PB

{

χ1(r
′′′),Πr(r′)

}

PB
, (B.12)

by using the standard Poisson bracket
{

Ar(r),Π
r(r′)

}

PB
= δ(r− r′), which yields:

{

Ar(r),Π
r(r′)

}

DB
= 2δ(r − r′) . (B.13)

Upon canonical quantization (B.13) becomes:

[

Π̂r(r), Âr(r
′)
]

= 2iδ(r − r′) , i.e. Π̂r(r) = − 2iδ

δAr(r)
. (B.14)

Now, following Ref. 28 we consider a gauge invariant quantum state of two

oppositely charged (±e0) fermions located at r = 0 and r = L, respectively,

explicitly given by:

|Φ〉 ≡ |Ψ̄(L)Ψ(0)〉 = Ψ̄(L) exp

{

ie0

∫ L

0

dz Ar(z)

}

Ψ(0)|0〉 . (B.15)

The average of the quantized canonical Hamiltonian (B.8) in this state (B.15),

where now Πr(r) will act on Ar(r) according to (B.14):

〈Φ|Ĥ |Φ〉 ≡ Veff(L) , (B.16)

can be viewed as effective potential between the quantized fermionic pair gener-

ated by the nonlinear gauge field theory containing the “square-root” Maxwell

term (B.1).

Using (B.14) one calculates:
[

Π̂r(r), ie0

∫ L

0

dz Ar(z)

]

= 2e0θ(L − r) , (B.17)

[[

(

Π̂r(r)
)2
, ie0

∫ L

0

dz Ar(z)

]

, ie0

∫ L

0

dz Ar(z)

]

= 8e20θ(L − r) , (B.18)
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where θ(r− r′) denotes the step-function on the half-line (both r, r′ > 0). Plugging

(B.17)–(B.18) into (B.16) we obtain:

Veff(L) = − e20
2π

1

L
+ e0f0

√
2L+ (L-independent const) , (B.19)

which has precisely the form of the “Cornell” potential.44–46
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